

Influences of Microbial Infections on Hormonal Balance

Wafaa Hazim Salih^{1,*}, Huda S. H. Al-Khalidy²

¹ Department of Microbiology, Al-Kindy College of Medicine, University of Baghdad, Baghdad 10071, Iraq

² Department of Clinical Biochemistry, Al-Kindy College of Medicine, University of Baghdad, Baghdad 10071, Iraq

* Corresponding author: wafaahazim@kmc.uobaghdad.edu.iq

Submission: November 30, 2024 Accepted: January 22, 2025 Published: March 31, 2025

Abstract

Although considerable knowledge exists on bacterial infections' ability to alter the immune response, significantly less is understood about their impact on hormonal regulation, specifically concerning the stress hormone cortisol. Cortisol is a vital hormone in an organism's stress response, its levels are precisely controlled by hypothalamic-pituitary-adrenal axis. It is triggered during bacterial infections, leading to disrupted cortisol secretion, which impairs the body's innate reaction to stress, both acute and chronic. This review elucidates the mechanisms by which bacterial infections affect cortisol levels, beginning with the disruption of normal cortisol production due to acute or chronic infection. Cortisol serves a dual function in regulating the immune response: it functions as an inflammation reducing agent, while its dysregulation frequently results in heightened inflammatory damage. The significant implications of alterations in cortisol levels for stress-related disorders, including anxiety and depression, as well as cardiovascular diseases, have been examined. It also examines the influence of several bacterial pathogens on cortisol modulation, indicating that distinct infections may elicit divergent responses in cortisol dynamics. A comprehensive understanding of the interplay between bacterial infections and cortisol regulation will yield significant insights into stress management, immunological responses, and potential therapeutic targets.

Keyword: Cortisol, Stress and bacterial infection, HPA axis.

Introduction

The immune and endocrine systems are among the most intricate and vital in the body. Recent research during the past decade has shown their remarkable interaction, demonstrating several bidirectional communication pathways and reciprocal regulatory mechanisms [1]. Dysregulations of the immune system are associated with endocrine disorders like autoimmune thyroiditis, diabetes types 1 and 2, osteoporosis, and dysfunctions of the HPA axis. Thyroid cancer and other endocrine malignancies are associated with immune system impairment [2]. Stress has

unambiguous and diverse effects on cognitive performance, mostly attributable to cortisol's impact on brain function. Stress impacts cognitive function in multiple manners [3]. Stress and the hypothalamic suprachiasmatic nucleus (SCN) activate the hypothalamic-pituitary-adrenal (HPA) axis, resulting in the secretion of cortisol from the adrenal cortex into the circulation [4, 5]. Human cognitive abilities can be influenced by both acute and chronic amounts of cortisol. The effects may be positive or negative, contingent upon cognitive function, cortisol timing, and dosage [6]. The impact of

cortisol on various activities is contingent upon the quantity and kind of cortisol receptors present in brain regions associated with cortisol [7]. There are two intracellular cortisol receptors present in the body. These are receptors for glucocorticoids (GR) and mineralocorticoids (MR). Mineralocorticoids are found specifically in the brain, kidneys, colon, heart, and sweat glands, while glucocorticoids are distributed throughout most tissues [8, 9, 10]. This review focuses on evaluating how bacterial infections influence cortisol levels and the body's natural reaction to physiological stress. It explores the interaction between bacterial pathogens and HPA axis, detailing the mechanisms by which infections alter cortisol production and regulation. Gaining insight into cortisol's role in managing inflammation and stress responses is crucial for addressing both acute and chronic stress-related health conditions.

Understanding Cortisol and the Stress Response

An increase in cortisol production peaks twenty to forty minutes after the stressor starts. This surge is caused by the triggering of HPA axis. The cortisol secretion in response to stress varies greatly from one person to the next. Some researchers have hypothesized that stress-induced mental disorders, including anxiety and depression, are strongly correlated with cortisol levels and the HPA axis's proper functioning [11, 12]. The HPA axis is the principal element of the physiological reaction to stress in the central nervous system (CNS). The HPA axis's physiological response to acute stressors ensures our survival in potentially life-threatening situations [13]. The termination of the cascade initiated by a stressor is essential for human well-being, whereas dysfunctions in this area contribute to allostatic load and increased

vulnerability to stress [14]. Selye discovered that the body's mechanisms for responding to stress not only safeguard and rejuvenate the body but can also inflict harm [15]. Cortisol is recognized as a principal stress hormone secreted by the adrenal gland, playing an important function in managing the response of the body to stress, immunological regulation, and homeostasis [16]. Cortisol release during stress regulates energy management by enhancing glucose availability to enhance physical and mental endurance [17]. It is essential in regulating immunological responses by suppressing pro-inflammatory cytokines and increasing anti-inflammatory pathways. Cortisol maintains homeostasis by inhibiting the release of other hormones through negative feedback mechanisms. It influences blood pressure, metabolism, and fluid equilibrium [18, 19]. Persistently elevated cortisol levels lead to immunological suppression by inhibiting interleukin synthesis through a negative feedback mechanism, hence increasing susceptibility to infections [20]. Chronic elevated cortisol levels can disrupt the body's homeostatic systems, leading to hypertension, insulin resistance, and metabolic syndrome. Cortisol operates as an intermediary between stress responses and essential life functions; its dysregulation can result in numerous health problems [21, 22].

Mechanisms of Bacterial Infections and Immune Activation

Bacterial infections elicit a series of immunological responses that defend against invading pathogens. Bacteria emit PAMPs, including lipopolysaccharides and peptidoglycans, in response to infection, which are detected by pattern recognition receptors on immune cells such as macrophages, dendritic cells, and neutrophils [23, 24]. Recognition via pattern

recognition receptors (PRRs) triggers the activation of innate immunity, characterized by a cytokine-driven pro-inflammatory response featuring TNF- α and IL-6 aimed at recruiting more leukocytes to the infection site and initiating inflammation and bacterial phagocytosis [25, 26]. Adaptive immunity also encompasses antigen-presenting cells, which convey bacterial antigens to T-cells. The T-cells develop into several subsets to combat the virus. T-helper cells stimulate B-cells to generate neutralizing antibodies that recognize and eliminate germs [27, 28]. Certain bacteria have the capability to evade the immune system by forming biofilms, modifying surface proteins, and secreting toxins that disrupt host immunological function [29]. The immune response to bacterial infections significantly involves cytokine release, which can either aid in disease management or prove detrimental if poorly managed [30,31]. Immune cells detect infections during bacterial invasion using PRRs, particularly Toll-like receptors (TLRs), which specifically recognize lipopolysaccharides and other bacterial components [32]. The activation of intracellular cascades, specifically the NF- κ B pathway, triggers secretion of pro-inflammatory cytokines including IL-1, IL-6, and TNF- α [33, 34]. The secreted pro-inflammatory cytokines facilitate the immune response by attracting neutrophils and macrophages, along with other immune cells, to the infection place. This localized inflammation result in the eradication of the encapsulated bacteria [35]. Nonetheless, substantial cytokine releases, known as a cytokine storm, cause extensive inflammation and may result in grave consequences, such as sepsis [36]. Additional signaling mechanisms, including the JAK-STAT pathway, further modulate cytokine production and the differentiation of immune cells, especially guiding the response to particular

bacteria [37, 38]. Significant alterations in hormone release linked to the induction of immune system activity in response to infections or stressors are intended to regulate bodily defense mechanisms and preserve homeostasis [39, 40]. Upon exposure to pathogens, immune cells may generate pro-inflammatory cytokines, including IL-1, IL-6, and TNF- α , that not only recruits additional immune cells to inflammation site but may also activate the HPA axis, resulting in the release of stress hormones such as cortisol and adrenaline [41]. Cortisol regulates the immune response by inhibiting excessive inflammatory reactions, facilitating the function of immune cells, and curbing excessive immunological activity that may result in tissue damage [20,42].

Impact of Bacterial Infections on Cortisol Levels

The presence of bacterial infection triggers interactions with the hypothalamic-pituitary-adrenal axis, a critical pathway in the stress response, which in turn result in cortisol secretion [43]. Immune cells trigger the secretion of pro-inflammatory cytokines, such as interleukins 1 and 6 (IL-1, IL-6), and tumor necrosis factor-alpha (TNF- α), upon detecting bacterial components during bacterial invasion [34]. These cytokines migrate to the brain, where they stimulate the hypothalamus to synthesize corticotropin-releasing hormone (CRH). CRH triggers the pituitary gland to release adrenocorticotropic hormone (ACTH), which subsequently activates the adrenal glands to release cortisol [44, 45]. Cortisol exerts an anti-inflammatory impact, thereby attenuating or regulating the immune response by inhibiting further cytokine production to prevent an excessive inflammatory reaction [46, 47]. In cases of severe or chronic infections, continuous cytokine stimulation might result in sustained

cortisol release, ultimately inhibiting immune function and hindering bacterial elimination [48, 49]. The cortisol response to infection significantly varies based on the type, length of time, and severity of the infection [43, 50]. Acute bacterial infections typically elicit an acute stress response in the body, characterized by a rapid increase in cortisol to defend against excessive inflammatory reactions and to mobilize energy reserves. A mild infection often induces a slight elevation in cortisol levels, sufficient to manage immunological activation without causing suppression [51, 52]. Conversely, severe or systemic infections, such as sepsis, exhibit significantly elevated cortisol levels for extended durations, partly due to the persistent stimulation of cytokines and the activation of the HPA axis [36,53]. Chronic or recurring infections cause variations in cortisol levels, typically elevated at first but later diminished as the HPA axis may become dysregulated due to persistent stimulation, occasionally resulting in what is termed "adrenal fatigue." [49,54,55,56]. Furthermore, the inherent characteristics of the infectious pathogen affect cortisol variability. Bacterial infections typically elicit a more pronounced reaction, but viral or fungal infections frequently generate a distinct and perhaps less marked cortisol response [57, 58]. IL-6 and TNF- α are significant inflammatory mediators that modulate cortisol levels by activating HPA axis as a result of infections and inflammatory disorders [16]. These cytokines, upon activation by a pathogen or tissue injury, stimulate the hypothalamus to enhance the release of CRH, a hypothalamic releasing hormone. CRH prompts the pituitary gland to secrete ACTH, which in turn activates the adrenal glands to synthesize and release cortisol [59, 60]. IL-6 is particularly effective in activating HPA axis through cortisol secretion

due to its capacity to communicate directly with the hypothalamus and exert influence at the pituitary level [46]. TNF- α similarly facilitates the activation of the HPA axis while also regulating other cytokines implicated in the comprehensive inflammatory response. Cortisol is secreted through a feedback system to regulate inflammation by inhibiting additional cytokine synthesis, thereby safeguarding tissues from inflammatory damage [61, 62].

Bacterial Infections and Cortisol Modulation:

In sepsis and systemic bacterial infection, cortisol levels fluctuate significantly as the body attempts to regulate the intense inflammatory response and preserve homeostasis. Sepsis is recognized for precipitating a fast elevation of pro-inflammatory cytokines, such as IL-1, IL-6, and TNF- α . It swiftly stimulates the hypothalamic-pituitary-adrenal axis, resulting in a significant surge in cortisol production, essential for regulating inflammation, sustaining blood pressure, and mobilizing glucose to facilitate vital organ function during acute physiological stress. Nonetheless, this cortisol surge may be dysregulated in extended or severe sepsis [63, 64, 65]. Elevated cortisol levels initially inhibit excessive inflammation; however, with the progression of sepsis, the adrenal glands fail to sustain cortisol production due to adrenal fatigue or compromised HPA axis signaling [66, 67]. This syndrome is termed relative adrenal insufficiency, characterized by inadequate cortisol levels despite ongoing inflammation, exacerbated immune suppression, hypotension, and organ failure. In sepsis, the body's inability to regulate cortisol levels underscores the hormone's critical role in modulating immune responses and overall survival during systemic infections [68, 69]. Gastrointestinal infections, especially those caused by *E. coli*, *Salmonella*,

and *Clostridium difficile*, can significantly affect cortisol levels via modifications in the gut flora and direct immune activation. The gut microbiota is crucial for regulating immunological responses and modifying the HPA axis. Gastrointestinal infections affect the microbiome, resulting in diminished levels of beneficial bacteria coupled with an increase in pathogenic bacteria, which subsequently heightens gut permeability and inflammation [70, 71, 72]. This then induces an imbalance and inflammation, which in turn cause the secretion of pro-inflammatory cytokines, such as IL-6 and TNF- α , which activate the HPA axis and increase cortisol production [73, 74]. Conversely, although elevated cortisol may mitigate local inflammation in the gastrointestinal tract, prolonged cortisol release undermines gut immunity and could result in the survival of pathogens [65, 75]. Furthermore, cortisol induces additional alterations in the microbiome population, resulting in a decline in microbial diversity and beneficial species. Thus, this detrimental cycle of elevated cortisol and microbiome disturbance may exacerbate gastrointestinal symptoms and hinder recovery, as cortisol's immunosuppressive properties undermine the capacity to properly eliminate the infection [71, 76]. During a respiratory infection, the lung immune cells swiftly generate pro-inflammatory cytokines, such as IL-6 and TNF- α , thereby activating the hypothalamic-pituitary-adrenal axis. This activation leads to cortisol synthesis, which is essential for regulating inflammation, reducing lung tissue edema, and maintaining blood pressure which are all vital for respiration during infection [77, 78, 79]. Elevated cortisol levels during respiratory infections serve to mitigate excessive inflammation that could potentially damage lung tissues. If the infection is more severe or prolonged, elevated

cortisol levels might inhibit immunological activities and hinder the body's ability to eliminate the infection [80, 81].

Long-Term Hormonal Effects of Chronic Bacterial Infections

Chronic bacterial infections ultimately result in prolonged hormonal disruption, affecting the endocrine system and subsequently altering the equilibrium of biological systems [82]. Chronic bacterial infections typically result in prolonged immunological activation, leading to persistent inflammatory responses. This is known as chronic inflammation, which induces the persistent secretion of pro-inflammatory cytokines, hence activating the HPA axis. This activation elevates cortisol synthesis, an essential hormone for modulating stress and inflammatory reactions. Prolonged increased cortisol levels, however, have numerous adverse impacts on bodily systems, including immunological suppression, insulin resistance, and compromised thyroid function [83, 20, 26]. Chronic infection can negatively impact thyroid function, as the hypothalamus and pituitary regulate thyroid hormones through the HPA axis, and prolonged, subacute inflammation may induce alterations in thyroid hormones, potentially resulting in hypothyroidism or other thyroid problems [84, 85]. The chronic bacterial infection will disrupt the secretion of growth hormone and prolactin, adversely impacting tissue repair, growth, and general metabolic health [86].

Interplay Between Cortisol, Stress, and Immune Response During Infection:

Cortisol, linked to stress and immunological response during infection, serves as a crucial component of the body's defenses. Upon the onset of any illness, an immune response is promptly activated, leading to the secretion of

pro-inflammatory cytokines, including IL-1, IL-6, and TNF- α . These then activate the cascade that commences the hypothalamic-pituitary-adrenal axis, which subsequently triggers the adrenal glands to secrete cortisol. It is a steroid hormone crucial for regulating the immune response by optimally balancing inflammation and immunological control to effectively address threats. Cortisol regulates its functions by inhibiting specific cytokines and averting excessive immunological activation to prevent tissue damage, hence sustaining immune homeostasis [41, 42, 43]. Nonetheless, the relationship between cortisol and immunological response is not one-dimensional. Cortisol is recognized for its ability to enhance the immune response in the short term by supplying energy and facilitating the effective operation of immune cells at infection sites, particularly during acute infections. Cortisol safeguards the body against the adverse consequences of sustained inflammation, such as cytokine storms that can result in tissue damage and potential organ failure. Cortisol has a crucial balancing role in survival during infection [87, 88, 54]. Conversely, chronic stress or infection leads to persistently elevated cortisol levels [46, 89]. Prolonged exposure of the immune system to cortisol ultimately inhibits its functioning, hence diminishing the body's capacity to eliminate infections and heightening susceptibility to secondary infections. Prolonged rise of cortisol result in metabolic alterations such as insulin resistance and weight gain, which subsequently impact immunological function [16, 90, 91, 92].

Conclusion

Cortisol levels, a primary component of the body's stress response, are significantly influenced by bacterial infections. The link between immune activity and hormone control is

intricate, although it is vital concerning the severity and progression of infection. Immune responses to bacterial infections influence the HPA axis, correlating with changes in cortisol levels. These alterations can influence not only the stress response but also several physiological functions, including immune function, metabolism, and behavior. Chronic bacterial infections may lead to prolonged dysregulation of cortisol levels, potentially contributing to the genesis of anxiety, depression, and cardiovascular disease. Understanding the intricate relationship between bacterial infection and hormone regulation, especially cortisol, may enhance clinical results for patients with persistent infections or stress-related disorders.

References

- [1] Yavropoulou MP, Sfikakis PP, Chrousos GP. Immune system effects on the endocrine system. *Endotext* [Internet]. 2023 Nov 8.
- [2] Peleg H, Ben-Chetrit E. Impact of endocrine disorders on autoimmune diseases. *Endocrinology and Systemic Diseases*. 2021;227-61.
- [3] Law R, Clow A. Stress, the cortisol awakening response and cognitive function. *International review of neurobiology*. 2020 Jan 1;150:187-217.
- [4] Athanasopoulos F. HPA Axis and Cognitive Function: Circadian Cortisol Pattern and Performance on the Countermanding Task.
- [5] Kinlein SA, Karatsoreos IN. The hypothalamic-pituitary-adrenal axis as a substrate for stress resilience: Interactions with the circadian clock. *Frontiers in neuroendocrinology*. 2020 Jan 1;56:100819.
- [6] Stalder T, Oster H, Abelson JL, Huthsteiner K, Klucken T, Clow A. The cortisol awakening response: regulation and

functional significance. *Endocrine Reviews*. 2024 Aug 23;bnae024.

[7] Huzard D, Rappeneau V, Meijer OC, Touma C, Arango-Lievano M, Garabedian MJ, Jeanneteau F. Experience and activity-dependent control of glucocorticoid receptors during the stress response in large-scale brain networks. *Stress*. 2021 Mar 4;24(2):130-53.

[8] Balasamy S, Atchudan R, Arya S, Gunasekaran BM, Nesakumar N, Sundramoorthy AK. Cortisol: Biosensing and detection strategies. *Clinica Chimica Acta*. 2024 Jul 24;119888.

[9] Van Slycke S, Van Den Heede K, Vandenwyngaerden EA. Adrenal Glands: Anatomy, Physiology, and Pathophysiology. In *Endocrine Surgery Comprehensive Board Exam Guide 2022* Jan 19 (pp. 437-455). Cham: Springer International Publishing.

[10] Vassiliou AG, Athanasiou N, Vassiliadi DA, Jahaj E, Keskinidou C, Kotanidou A, Dimopoulou I. Glucocorticoid and mineralocorticoid receptor expression in critical illness: a narrative review. *World Journal of Critical Care Medicine*. 2021 Jul 7;10(4):102.

[11] Pulopulos MM, Baeken C, De Raedt R. Cortisol response to stress: The role of expectancy and anticipatory stress regulation. *Hormones and behavior*. 2020 Jan 1;117:104587.

[12] Faravelli C, Lo Sauro C, Lelli L, Pietrini F, Lazzeretti L, Godini L, Benni L, Fioravanti G, Alina Talamba G, Castellini G, Ricca V. The role of life events and HPA axis in anxiety disorders: a review. *Current pharmaceutical design*. 2012 Dec 1;18(35):5663.

[13] Leistner C, Menke A. Hypothalamic-pituitary-adrenal axis and stress. *Handbook of clinical neurology*. 2020 Jan 1;175:55-64.

[14] Walsh CE. *Assessing the Cumulative Toll of Chronic Stress: Pathways and Disparities in Allostatic Load across the Life Course* (Doctoral dissertation, The University of North Carolina at Chapel Hill).

[15] Madazimova KT, Mambetalina AS, Isatayeva BB. Stress as a psychological phenomenon.

[16] Knezevic E, Nenic K, Milanovic V, Knezevic NN. The role of cortisol in chronic stress, neurodegenerative diseases, and psychological disorders. *Cells*. 2023 Nov 29;12(23):2726.

[17] Shchaslyvi AY, Antonenko SV, Telegeev GD. Comprehensive Review of Chronic Stress Pathways and the Efficacy of Behavioral Stress Reduction Programs (BSRPs) in Managing Diseases. *International Journal of Environmental Research and Public Health*. 2024 Aug 16;21(8):1077.

[18] Lightman SL, Birnie MT, Conway-Campbell BL. Dynamics of ACTH and cortisol secretion and implications for disease. *Endocrine reviews*. 2020 Jun;41(3):bnaa002.

[19] Tang P, Zhu H, Chen D, Chen Y, Chen S, Liu Y, Zhang X, Huang X, Li Z, Ouyang P, Geng Y. Effect of cortisol through GR regulated inflammatory cytokine expression and apoptosis of Siberian sturgeon (*Acipenser baerii*) after LPS treatment. *Aquaculture*. 2025 Jan 30;595:741676.

[20] Alotiby A. Immunology of Stress: A Review Article. *Journal of Clinical Medicine*. 2024 Oct 25;13(21):6394.

[21] Kivimäki M, Bartolomucci A, Kawachi I. The multiple roles of life stress in metabolic disorders. *Nature Reviews Endocrinology*. 2023 Jan;19(1):10-27.

[22] Mohd Azmi NA, Juliana N, Azmani S, Mohd Effendy N, Abu IF, Mohd Fahmi Teng NI, Das S. Cortisol on circadian rhythm and its effect on cardiovascular system. *International journal of environmental research and public health*. 2021 Jan;18(2):676.

[23] Maritska Z, Hidayat R. The Role of Pattern Recognition Receptor (PRR) in the Body's Defense System: A Narrative Literature Review. *Open Access Indonesian Journal of Medical Reviews*. 2023;3(2):365-8.

[24] Ragland SA, Kagan JC. Cytosolic detection of phagosomal bacteria—Mechanisms underlying PAMP exodus from the phagosome into the cytosol. *Molecular microbiology*. 2021 Dec;116(6):1420-32.

[25] van Hensbergen VP, Hu X. Pattern recognition receptors and the innate immune network. In *Molecular Medical Microbiology* 2024 Jan 1 (pp. 407-441). Academic Press.

[26] Ganjali A, Fakheri BA, Bahari A, Fahmideh L, Valadan R. The role of cytokines and pattern recognition receptors in inflammation caused by helicobacter pylori infection in gastric cancer. *International Journal of Basic Science in Medicine*. 2022 May 8;7(1):3-10.

[27] Kedmi R, Littman DR. Antigen-presenting cells as specialized drivers of intestinal T cell functions. *Immunity*. 2024 Oct 8;57(10):2269-79.

[28] Raju S. Signaling Mechanisms in Adaptive Immunity. *Washington University in St. Louis*; 2020.

[29] Pugazhendhi AS, Wei F, Hughes M, Coathup M. Bacterial adhesion, virulence, and biofilm formation. In *Musculoskeletal Infection* 2022 Feb 1 (pp. 19-64). Cham: Springer International Publishing.

[30] Wallis RS, O'Garra A, Sher A, Wack A. Host-directed immunotherapy of viral and bacterial infections: past, present and future. *Nature Reviews Immunology*. 2023 Feb;23(2):121-33.

[31] Jarczak D, Nierhaus A. Cytokine storm—definition, causes, and implications. *International journal of molecular sciences*. 2022 Oct 3;23(19):11740.

[32] Wicherka-Pawlowska K, Wróbel T, Rybka J. Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases. *International journal of molecular sciences*. 2021 Dec 13;22(24):13397.

[33] Antushevich H. Interplays between inflammasomes and viruses, bacteria (pathogenic and probiotic), yeasts and parasites. *Immunology Letters*. 2020 Dec 1;228:1-4.

[34] Ibrahim A, Saleem N, Naseer F, Ahmed S, Munawar N, Nawaz R. From cytokines to chemokines: Understanding inflammatory signaling in bacterial meningitis. *Molecular Immunology*. 2024 Sep 1;173:117-26.

[35] Zhang S, Yang H, Wang M, Mantovani D, Yang K, Witte F, Tan L, Yue B, Qu X. Immunomodulatory biomaterials against bacterial infections: Progress, challenges, and future perspectives. *The Innovation*. 2023 Aug 28.

[36] Tang XD, Ji TT, Dong JR, Feng H, Chen FQ, Chen X, Zhao HY, Chen DK, Ma WT. Pathogenesis and treatment of cytokine storm induced by infectious diseases. *International journal of molecular sciences*. 2021 Nov 30;22(23):13009.

[37] Hu Q, Bian Q, Rong D, Wang L, Song J, Huang HS, Zeng J, Mei J, Wang PY. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. *Frontiers in Bioengineering and Biotechnology*. 2023 Feb 23;11:1110765.

[38] Huang IH, Chung WH, Wu PC, Chen CB. JAK–STAT signaling pathway in the pathogenesis of atopic dermatitis: An updated review. *Frontiers in immunology*. 2022 Dec 8;13:1068260.

[39] Harding AT, Heaton NS. The impact of estrogens and their receptors on immunity and inflammation during infection. *Cancers*. 2022 Feb 12;14(4):909.

[40] Sarkodie EK, Zhou S, Baidoo SA, Chu W. Influences of stress hormones on microbial infections. *Microbial pathogenesis*. 2019 Jun 1;131:270-6.

[41] Ciaramella A, Carli G. The role of immunity in comorbid pain and depression.

[42] Kamgang VW, Murkwe M, Wankeu-Nya M. Biological Effects of Cortisol.

[43] Alekseeva LA, Makarenkova EV, Skripchenko NV, Bessonova TV, Zhirkov AA, Monakhova NE. Diagnostic value of cortisol identification in biological body fluid in case of infectious diseases (literature review). *Pediatrician (St. Petersburg)*. 2021 Dec 14;12(5):59-69.

[44] Johnson JD, Barnard DF, Kulp AC, Mehta DM. Neuroendocrine regulation of brain cytokines after psychological stress. *Journal of the Endocrine Society*. 2019 Jul;3(7):1302-20.

[45] Sharan P, Vellapandian C. Hypothalamic-Pituitary-Adrenal (HPA) Axis: Unveiling the Potential Mechanisms Involved in Stress-Induced Alzheimer's Disease and Depression. *Cureus*. 2024 Aug 23;16(8):e67595.

[46] Noushad S, Ahmed S, Ansari B, Mustafa UH, Saleem Y, Hazrat H. Physiological biomarkers of chronic stress: A systematic review. *International journal of health sciences*. 2021 Sep;15(5):46.

[47] Ouyang A, Zhang M, Yuan G, Liu X, Su J. Chitooligosaccharide boosts the immunity of immunosuppressed blunt snout bream against bacterial infections. *International Journal of Biological Macromolecules*. 2023 Jul 1;242:124696.

[48] Chen Y, Cui W, Li X, Yang H. Interaction between commensal bacteria, immune response and the intestinal barrier in inflammatory bowel disease. *Frontiers in Immunology*. 2021 Nov 11;12:761981.

[49] Sic A, Cvetkovic K, Manchanda E, Knezevic NN. Neurobiological Implications of Chronic Stress and Metabolic Dysregulation in Inflammatory Bowel Diseases. *Diseases*. 2024 Sep 18;12(9):220.

[50] Duran-Pinedo AE, Solbiati J, Frias-Lopez J. The effect of the stress hormone cortisol on the metatranscriptome of the oral microbiome. *npj Biofilms and Microbiomes*. 2018 Oct 18;4(1):25.

[51] Ciji A, Akhtar MS. Stress management in aquaculture: A review of dietary interventions. *Reviews in Aquaculture*. 2021 Sep;13(4):2190-247.

[52] Rezai M, Fullwood C, Hird B, Chawla M, Tetlow L, Banerjee I, Patel L. Cortisol levels during acute illnesses in children and

adolescents: a systematic review. *JAMA Network Open*. 2022 Jun 1;5(6):e2217812-

[53] Vandewalle J, Libert C. Glucocorticoids in sepsis: to be or not to be. *Frontiers in immunology*. 2020 Jul 21;11:1318.

[54] Kommareddy Jr A, Vagha JD, Meshram RJ. Navigating the Landscape of Hydrocortisone Administration in Septic Shock: Current Concepts and Future Directions. *Cureus*. 2023 Dec;15(12).

[55] Ormsby M. The HPA Axis in Health and Homeostasis: A Review.

[56] Palego L, Giannaccini G, Betti L. Neuroendocrine response to psychosocial stressors, inflammation mediators and brain-periphery pathways of adaptation. *Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Central Nervous System Agents)*. 2021 Apr 1;21(1):2-19.

[57] Uccella S, Dottermusch M, Erickson L, Warmbier J, Montone K, Saeger W. Inflammatory and infectious disorders in endocrine pathology. *Endocrine Pathology*. 2023 Dec;34(4):406-36.

[58] Paolo Jr WF, Nosanchuk JD. Adrenal infections. *International journal of infectious diseases*. 2006 Sep 1;10(5):343-53.

[59] Kennedy RH, Silver R. Neuroimmune signaling: cytokines and the central nervous system. *InNeuroscience in the 21st century: from basic to clinical* 2022 Oct 18 (pp. 883-922). Cham: Springer International Publishing.

[60] Aghayan SK, Shabani AH, Badri T, Hosseni Nejad J, Esmaeili Gouvrchin Ghaleh H. Relationship between Stress and the Immune System-related Disorders. *International Journal of Medical Reviews*. 2024 Oct 1;11(3):775-85.

[61] Kennedy RH, Silver R. Neuroimmune signaling: cytokines and the central nervous system. *InNeuroscience in the 21st century: from basic to clinical* 2022 Oct 18 (pp. 883-922). Cham: Springer International Publishing.

[62] Zhou L, Wang T, Yu Y, Li M, Sun X, Song W, Wang Y, Zhang C, Fu F. The etiology of poststroke-depression: a hypothesis involving HPA axis. *Biomedicine & Pharmacotherapy*. 2022 Jul 1;151:113146.

[63] Melis MJ, Miller M, Peters VB, Singer M. The role of hormones in sepsis: an integrated overview with a focus on mitochondrial and immune cell dysfunction. *Clinical Science*. 2023 May;137(9):707-25.

[64] Amaro-Leal Â. Peripheral multiorgan dysfunction induced by sepsis: the role of NF κ B pathway and its impact on brain and heart function.

[65] Meduri GU. Glucocorticoid Receptor Alpha: Origins and Functions of the Master Regulator of Homeostatic Corrections in Health and Critical Illness.

[66] Vandewalle J, Libert C. Glucocorticoids in sepsis: to be or not to be. *Frontiers in immunology*. 2020 Jul 21;11:1318.

[67] Téblick A, Gunst J, Langouche L, Van den Berghe G. Novel insights in endocrine and metabolic pathways in sepsis and gaps for future research. *Clinical Science*. 2022 Jun;136(11):861-78.

[68] Hahner S, Ross RJ, Arlt W, Bancos I, Burger-Stritt S, Torpy DJ, Husebye ES, Quinkler M. Adrenal insufficiency. *Nature Reviews Disease Primers*. 2021 Mar 11;7(1):19.

[69] Ilias I, Vassiliou AG, Keskinidou C, Vrettou CS, Orfanos S, Kotanidou A, Dimopoulou I. Changes in Cortisol Secretion and

Corticosteroid Receptors in Critically Ill Patients with Sepsis/Septic Shock and Scope for Treatment.

[70] Tetel MJ, De Vries GJ, Melcangi RC, Panzica G, O'Mahony SM. Steroids, stress and the gut microbiome-brain axis. *Journal of neuroendocrinology*. 2018 Feb;30(2):e12548.

[71] Tetel MJ, De Vries GJ, Melcangi RC, Panzica G, O'Mahony SM. Steroids, stress and the gut microbiome-brain axis. *Journal of neuroendocrinology*. 2018 Feb;30(2):e12548.

[72] Thomson JR, Friendship RM. Digestive system. *Diseases of swine*. 2019 Jun 3:234-63.

[73] Shrestha B, Patel D, Shah H, Hanna KS, Kaur H, Alazzeh MS, Thandavaram A, Channar A, Purohit A, Venugopal S. The Role of gut-microbiota in the pathophysiology and therapy of irritable bowel syndrome: A systematic review. *Cureus*. 2022 Aug;14(8).

[74] Zhang W, Dong XY, Huang R. Gut microbiota in ischemic stroke: role of gut bacteria-derived metabolites. *Translational stroke research*. 2023 Dec;14(6):811-28.

[75] Meher AK, Acharya B, Sahu PK. Probiotics: Bridging the interplay of a healthy gut and psychoneurological well-being. *Food Bioengineering*. 2024 Mar;3(1):126-47.

[76] Knight RO, Cedillo YE, Judd SE, Baker EH, Frugé AD, Moellering DR. A cross-sectional study observing the association of psychosocial stress and dietary intake with gut microbiota genera and alpha diversity among a young adult cohort of black and white women in Birmingham, Alabama. *BMC Women's Health*. 2024 Feb 24;24(1):142.

[77] Marcellini A. Glucocorticoid modulation of the innate antiviral immune response in bronchial epithelial cells.

[78] Zhang J, Ge P, Liu J, Luo Y, Guo H, Zhang G, Xu C, Chen H. Glucocorticoid treatment in acute respiratory distress syndrome: An overview on mechanistic insights and clinical benefit. *International Journal of Molecular Sciences*. 2023 Jul 28;24(15):12138.

[79] Bradshaw PC, Seeds WA, Miller AC, Mahajan VR, Curtis WM. COVID-19: Proposing a Ketone-Based Metabolic Therapy as a Treatment to Blunt the Cytokine Storm. *Oxidative Medicine and Cellular Longevity*. 2020;2020(1):6401341.

[80] Sarkar K, Sil PC. Infectious lung diseases and endogenous oxidative stress. *Oxidative Stress in Lung Diseases: Volume 1*. 2019:125-48.

[81] Bajinka O, Simbilyabo L, Tan Y, Jabang J, Saleem SA. Lung-brain axis. Critical reviews in microbiology. 2022 May 4;48(3):257-69.

[82] Adegoke EO, Rahman MS, Park YJ, Kim YJ, Pang MG. Endocrine-disrupting chemicals and infectious diseases: from endocrine disruption to immunosuppression. *International Journal of Molecular Sciences*. 2021 Apr 11;22(8):3939.

[83] Moser C, Jensen PØ, Thomsen K, Kolpen M, Rybtke M, Lauland AS, et al. Immune responses to *Pseudomonas aeruginosa* biofilm infections. *Frontiers in Immunology*. 2021 Feb 22;12:625597.

[84] Jacob JJ, Paul PA. Infections in Endocrinology: Tuberculosis. In K. R. Feingold (Eds.) et. al., *Endotext*. MDText.com, Inc. 2021

[85] Wu Z, Tian E, Chen Y, Dong Z, Peng Q. Gut microbiota and its roles in the

pathogenesis and therapy of endocrine system diseases. *Microbiological Research.* 2023 Mar 1;268:127291.

[86] Huang C, Meng D, Li Y, Lu S, Yang W, Wu B, Chen S, Yang Z, Liu H. Gut microbiota composition alteration analysis and functional categorization in children with growth hormone deficiency. *Frontiers in Pediatrics.* 2023 Feb 24;11:1133258.

[87] Baskerville R, Castell L, Bermon S. Sports and Immunity, from the recreational to the elite athlete. *Infectious Diseases Now.* 2024 Jun 1;54(4):104893.

[88] Jones C, Gwenin C. Cortisol level dysregulation and its prevalence—Is it nature's alarm clock?. *Physiological reports.* 2021 Jan;8(24):e14644.

[89] Agorastos A, Chrousos GP. The neuroendocrinology of stress: the stress-related continuum of chronic disease development. *Molecular Psychiatry.* 2022 Jan;27(1):502-13.

[90] Yiallouris A, Tsiotis C, Agapidaki E, Zafeiri M, Agouridis AP, Ntourakis D, Johnson EO. Adrenal aging and its implications on stress responsiveness in humans. *Frontiers in endocrinology.* 2019 Feb 7;10:54.

[91] DiNicolantonio JJ, Mehta V, Onkaramurthy N, O'Keefe JH. Fructose-induced inflammation and increased cortisol: A new mechanism for how sugar induces visceral adiposity. *Progress in cardiovascular diseases.* 2018 May 1;61(1):3-9.

[92] Hewagalamulage SD, Lee TK, Clarke IJ, Henry BA. Stress, cortisol, and obesity: a role for cortisol responsiveness in identifying individuals prone to obesity. *Domestic animal endocrinology.* 2016 Jul 1;56:S112-20.